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Abstract
The Earth’s magnetic field undergoes aperiodical reversals. These can be
explained by a simple two-disc dynamo system (Rikitake system). In this
paper, the Rikitake system is studied based on a differential geometry (theory
of Kosambi–Cartan–Chern). The electrical and mechanical equations of
motion are derived from Faraday’s law as well as from magnetohydrodynamic
equations. From the geometric theory, the solution of the Rikitake system can
be regarded as a trajectory on the tangent bundle. Accordingly, there exist
five geometrical invariants in the Rikitake system. The third invariant as a
torsion tensor can be expressed by mutual-inductances as a result of electrical
and mechanical interactions which cause the aperiodic magnetic reversal. This
aperiodic behaviour corresponds to a magnetohydrodynamic turbulent motion
by a topological invariant such as Chern–Simons number which expresses the
interaction between the toroidal and poloidal currents. This Rikitake system
is equivalent to other nonlinear dynamical systems. Thus, chaotic behaviours
of various nonlinear dynamical systems can be uniformly investigated by the
five geometrical invariants and the topological invariant (the Chern–Simons
number).

PACS numbers: 02.40.Ky, 05.45.−a, 91.25.Cw, 02.40.−k, 52.30.Cv

1. Introduction

It is known that the geomagnetic field has undergone aperiodic reversals till now. The
origin of the magnetic field can be explained by a simple one-disc dynamo system (Faraday
disc) [11]. The motion of electric charges in the Faraday disc has already been discussed
[10, 29, 30]. However, the aperiodic reversal of the magnetic field cannot occur in the one-
disc dynamo system. Therefore, a model for the reversal of the geomagnetic field has been
proposed by Rikitake [33]. This model is a simple two-disc dynamo system (Rikitake system).
Although the Rikitake system is hard to relate correctly to the real geomagnetic phenomena,
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the Rikitake system is not an oversimplified geophysical model. For example, the one-disc
dynamo system is totally regarded as a single electromechanical system as a whole and does
not behave chaotically [1]. On the other hand, the Rikitake system is a combination of two
electromechanical systems, because of the addition of another disc system. As a result, the
Rikitake system shows chaotic magnetic field reversals.

The Rikitake system has been discussed by many researchers, from various view points.
The chaotic magnetic reversals have been discussed by numerical and/or analytical approaches
[1, 14, 18, 19, 31]. Mathematically, algebraic geometric methods were applied to find a
constant of motion for the Rikitake system [24, 25]. In spite of these, two problems have not
been discussed so far.

One is a derivation of the equations of motion. In the previous studies, the equations of
motion have been given a priori and the focus was on the behaviour of the solution. Therefore,
in order to understand the electromechanical structure of the Rikitake system, the equations
of motion should be derived by electromagnetic laws.

The other problem is a geometrization of the Rikitake system. In general, the laws
of physics should be expressible by geometrical relationships [27]. For example, physical
phenomena in Lagrangian mechanics are described by a system of second-order differential
equations (Euler–Lagrange equations). Geometrically, the Euler–Lagrange equations are
equivalent to geodesic equations (semispray on tangent bundle) [3]. However, the above
previous studies have regarded the equations of motion as a system of first-order differential
equations and they have not been expressed geometrically yet. Therefore, in order to obtain
geometrical expressions, the Rikitake system should be regarded as a system of second-order
differential equations.

Geometrically, the second-order differential equations of the Rikitake system can be
investigated by the general path-space theory of Kosambi–Cartan–Chern (KCC-theory) in
Finsler space (Kosambi [22], Cartan [12], Chern [13]). The KCC-theory is a differential
geometric theory of the variational equations for the deviation of whole trajectories to nearby
ones. From the KCC-theory, five geometrical invariants are obtained. The second invariant
gives the Jacobi stability. The third invariant expresses a torsion tensor. The KCC-theory has
been applied to the field of electrical engineering. For example, in the theory of electrical
machinery, the KCC-theory has been applied to the unified electromechanical system [23].
The variational equations (hunting equations) have been derived in order to investigate the
behaviour of trajectories which are perturbed by the operation of the machine. The stability
of an airplane in flight has also been discussed [21] by the KCC-theory and Schouten’s film
space [35]. Similarly, the Rikitake system can be regarded as an electric machinery and so
the KCC-theory can be applied to such a system. The geometrical objects then express the
chaotic behaviour of the Rikitake system.

This chaotic behaviour of the Rikitake system is related to the motion of a
magnetohydrodynamic fluid. In dynamo theory, the initial magnetic field is dragged along by
the fluid motion and then sheared by the differential rotation. This winding motion known as
ω-effect creates a new magnetic field. This magnetic field then is twisted by a helical turbulent
motion due to the α-effect [32]. The turbulent α-effect is related to a topological invariant
called the magnetic helicity which is a measure of the twistedness of the magnetic field [8]. In
the Rikitake system, the α-effect is expressed by the angular velocity of the rotating disc [28].
Therefore, the relation between chaotic behaviour and magnetohydrodynamic motion can be
investigated by the topological invariant.

In this paper, the chaotic behaviour of the nonlinear dynamical system is expressed by
the geometrical and topological invariants. This paper consists of five sections. In section 2,
the KCC-theory is reviewed briefly. In section 3, the equations of motion for the Rikitake
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system are derived based on Faraday’s law. In section 4, the KCC-theory is applied to the
Rikitake system. Geometrical invariants of the Rikitake system are obtained. In section 5,
the relationship between the behaviour of the magnetic fields reversal and the geometrical
objects is discussed. Besides, the chaotic behaviour of the Rikitake system is also compared
with magnetohydrodynamic motion. Finally, it is pointed out that other nonlinear dynamical
systems can also be analysed by the geometrical and topological invariants.

2. KCC-theory and Jacobi equation

In this section, the geometrical background of the system of second-order differential equations
is introduced. Throughout this paper, Einstein’s summation convention is used. Moreover,
Latin indices i, j, k, . . . run from 1 to n.

2.1. Semispray and a constant of motion

Let M be a real smooth n-dimensional manifold and T M be its tangent bundle. Let
(xi) = (x1, . . . , xn),

(yi) =
(

dxi

dt

)
=

(
dx1

dt
,

dx2

dt
, . . . ,

dxn

dt

)
(1)

and time t be 2n + 1 local coordinates (t, xi, yi) on an open connected subset U of the Euclidean
(2n + 1)-dimensional space R × Rn × Rn. The time t is regarded as an absolute invariant.
Therefore, the change of coordinates will be

t̃ = t, x̃i = x̃i (x1, x2, . . . , xn). (2)

Generally, the equations of motion in Finsler space are given by the Euler–Lagrange
equations:

d

dt

(
∂L

∂yi

)
− ∂L

∂xi
= Fi , (3)

where the scalar function L is the Lagrangian and Fi is an external force. The triple
(M , L,Fi ) is called the Finslerian mechanical system [26]. For a regular Lagrangian L,
the Euler–Lagrange equations (3) are equivalent to a system of second-order differential
equations:

d2xi

dt2
+ 2Gi(xj , yj , t) = 0, (4)

where the function Gi(xj , yj , t) is smooth in a neighbourhood of some initial conditions(
xi

0, y
i
0, t0

) ∈ U . Moreover, the system of second-order differential equation is equivalent to
a vector field (semispray) S which determines a nonlinear connection Ni

j [3]:

S = yi ∂

∂xi
− 2Gi(xj , yj , t)

∂

∂yi
, (5)

Ni
j = ∂Gi

∂yj
. (6)

Such a dynamical system as the semispray does not behave chaotically when it has a
constant of motion. The following theorem is known [36, 37]:
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Theorem 1. For a vector field X, assume that [X, S] = FS, where F is a real valued function
and [, ] is a Lie bracket. Then, the relation holds

LS(F + div�X) = −F div�S + LX div�S, (7)

where div�S denotes the divergence of S with respect to the volume form �. LS� = (div�S)�

is a Lie derivative of � along the vector field S.

When F = 0 and div�S = constant, the right-hand side of (7) is equal to zero. Therefore,
LS(F + div�X) = 0 and the divergence of X does not change. The function div�X is a
constant of motion and X is called the symmetry generator [36, 37].

2.2. Geometric theory of a system of second-order differential equations

In the following, the geometric theory (KCC-theory) is briefly reviewed based on the notations
[3–5].

Let us consider a system of second-order differential equations (4). Under the non-
singular coordinates transformation (2), the KCC-covariant differential of a vector field ξ i(t)

on the open subset U ⊆ R × Rn × Rn is defined as follows:

Dξ i

dt
= dξ i

dt
+ Ni

j ξ
j . (8)

When we put ξ i = yi , the covariant differential becomes

Dyi

dt
= −εi ≡ Ni

jy
j − 2Gi, (9)

where εi is a contravariant vector field on U and is called the first KCC-invariant.
Then, consider that the trajectory xi(t) of the system (4) is varied into nearby ones

according to

x̄i (t) = xi(t) + ξ i(t)η, (10)

where η denotes a parameter with |η| small and the components of contravariant vector ξ i(t)

are defined along a curve xi = xi(t). Substituting (10) into (4) and taking the limit η → 0,
one gets the variational equations

d2ξ i

dt2
+ 2Ni

l

dξ l

dt
+ 2

∂Gi

∂xl
ξ l = 0. (11)

Using the KCC-covariant differential (8), one rewrites (11) in the covariant form

D2ξ i

dt2
+ P i

l ξ
l = 0, (12)

where

P i
j = 2

∂Gi

∂xj
+ 2GlGi

jl − yl
∂Ni

j

∂xl
− Ni

l N
l
j − ∂Ni

j

∂t
. (13)

Here, the Gi
jk ≡ ∂Ni

j

/
∂yk is a kind of Finsler connection (Berwald connection) [7]. This

variational equation (12) is called the Jacobi equation or ‘hunting equation’ in the field of
engineering [23]. The P i

j is called the second KCC-invariant or deviation curvature tensor
and gives the stability of whole trajectories from the following theorem [6, 34]:

Theorem 2. The trajectories of system (4) are Jacobi stable if and only if the real parts of the
eigenvalues of the deviation curvature tensor P i

j are strictly negative everywhere, and Jacobi
unstable otherwise.
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External circuit: b
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a

Figure 1. One-disc dynamo system (modified from figure in [11]).

The third, fourth and fifth invariants of the system (4) are given by

P i
jk ≡ 1

3

(
∂P i

j

∂yk
− ∂P i

k

∂yj

)
, P i

jkl ≡ ∂P i
jk

∂yl
, Di

jkl ≡ ∂Gi
jk

∂yl
. (14)

Because of the skew symmetry of lower indices j and k, the third invariant is regarded as
torsion tensor. The fourth invariant is the Riemann–Christoffel curvature tensor and the fifth
invariant Di

jkl is a kind of curvature tensor (Douglas tensor) [15].
Generally, in the Berwald space, there exist the two curvature tensors P i

jkl, D
i
jkl and

the one torsion tensor P i
jk [5]. Therefore, these geometrical objects express the geometrical

properties of the system of second-order differential equations.

3. Fundamental equations for a dynamo system

In this section, in the case of a one-disc dynamo system, the equations of motion are derived
first from Faraday’s law. Consequently, the equations of motion for the Rikitake system are
obtained based on the above derivation.

3.1. One-disc dynamo system

In a one-disc dynamo system, the rotating disc has two types of coordinate frames. One is a
laboratory frame or fixed frame in which the circuit is at rest. The other is a rotating observer
frame. Let us consider one-disc dynamo system from the laboratory frame. In this case, the
total circuit C is fixed to the disc and consists of the armature circuit a and the external circuit
b (figure 1). We denote the variables in the one-disc dynamo system with indices a and b that
correspond to armature circuit a and external circuit b, respectively.

A cylindrical coordinate system (r, θ, z) and its basis (er , eθ , ez) are used in order to derive
the equations of motion. Here, direction of the radius of disc is r, direction of the rotating
angle of disc is θ and direction of the normal to the disc is z. Radius of the disc is denoted by
h. In a one-disc dynamo system, the disc rotates about its axis with angular velocity ω = ωaez

which is the differentiation of the angle with respect to time; ωa = dθ/dt . Then, the velocity
of the conductor is given by v = rωaeθ . A path of current Ia between its rim and axle is
provided by the wire twisted as shown in a loop around the axle. The electric current is given
by the time differential of the charge; Ia = dq/dt . The current Ia generates a magnetic flux
density B = Bzez across the disc. The electric field is radially directed, i.e. E = Erer .



2760 T Yajima and H Nagahama

The electrical equation can be derived from Faraday’s law. In the laboratory frame,
Faraday’s law for the total circuit C can be written as

d

dt

∫
S

B · dS = −
∮

C

E · dl, (15)

where the dl and dS express an infinitesimal length of the circuit and an element of the disc,
respectively. The contour integral is split into two parts, i.e. one is the armature circuit a and
the other is the external circuit b [39]:

d

dt

∫
S

B · dS = −
∫

a

E · dl −
∫

b

E · dl. (16)

The second term on the right-hand side of equation (16) is the external voltage Vb. In the
disc dynamo model, there is no external voltage, and so Vb = 0.

On the other hand, the first term on the right-hand side of equation (16) is the
armature voltage. This term can be rewritten by using Ohm’s law in the laboratory frame:
J = σ(E + v × B), where σ is a conductivity of the system and J is the current density. By
Ohm’s law, the integral of armature circuit is obtained [39]:

−
∫

a

E · dl = −
∫

a

J
σ

· dl +
∫

a

(v × B) · dl. (17)

Thus, the Faraday’s law is reduced to

d

dt

∫
S

B · dS = −
∫

a

J
σ

· dl +
∫

a

(v × B) · dl. (18)

The first term on the right-hand side of equation (18) is the voltage Va across the armature
resistance R1

1: Va = −R1
1Ia , where the upper index 1 of R1

1 expresses an electrical system and
the lower index 1 expresses the electric current Ia .

On the other hand, the second term on the right-hand side of equation (18) represents the
electromotive force arising from the rotation ωa (speed voltage [39]). This second term can
be integrated from the centre to the periphery of disc∫ h

0
(v × B) · dl = 1

2
h2Bzωa

= M1
12Iaωa, (19)

where M1
12Ia ≡ h2Bz/2 because the magnetic flux is proportional to current. The coefficient

M1
12 is the mutual-inductance between the variables with lower indices 1 and 2, i.e. the current

Ia and the angular velocity ωa with respect to the upper index 1 of the electrical system.
Finally, since the magnetic flux through the coil is only due to the current Ia , the left-hand

side of (18) is

d

dt

∫
S

B · dS = d
(
L1

1Ia

)
dt

= L1
1

dIa

dt
, (20)

where L1
1 is the self-inductance between the electrical system expressed by the upper index

1 and the current Ia expressed by the lower index 1. Thus from (19) and (20), the following
proposition is obtained:

Proposition 1. The electrical equation of motion for the one-disc dynamo system can be
expressed by

L1
1

dIa

dt
= −R1

1Ia + M1
12Iaωa, (21)
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where Ia is the current flowing in the circuit, ωa is the angular velocity of disc, R1
1 is the

armature resistance, M1
12 is the mutual-inductance between coil and disc, and L1

1 is the
self-inductance.

Next, a mechanical equation is derived from the Navier–Stokes equation

ρ
∂ ṽ
∂t

+ ρ(ṽ ·∇)ṽ = −∇p − ∇U + Fe, (22)

where ṽ is the velocity of fluid motion, ρ is density, p is pressure, U is potential and Fe is
an external force including the electrical force. Then, suppose that the mechanical motion is
induced by this external force alone:

p = 0, U = 0, Fe = J × B + F′. (23)

Here, J × B = −IaBzeθ /2πr is the Lorentz force. F′ = F ′
θeθ is the mechanical force acting

in the tangential direction of the disc. The velocity of the fluid motion ṽ is regarded as the
angular velocity of the disc v. In this case, ρ(ṽ · ∇)ṽ vanishes because the velocity ṽ is given
by ṽ = v = rωaeθ . Thus, equation (22) is reduced to

ρr
dωa

dt
= − Bz

2πr
Ia + F ′

θ . (24)

In order to find the total torque, both sides of equation (24) are multiplied by the radius of disc
r = rer and integrated throughout the volume of the disc:∫

S

ρr2 dS
dωa

dt
= −

∫
S

r
Bz

2πr
Ia dS +

∫
S

rF ′
θ dS. (25)

The integrand on the left-hand side of equation (25) is the inertial moment of disc. The first
and second terms on the right-hand side of equation (25) express the mutual-inductance and
driving couple, respectively. Thus, the mechanical equation of motion is given by

J 2
2

dωa

dt
= −M2

11(Ia)
2 + F 2, (26)

where the relation M2
11Ia ≡ h2Bz/2 is used. The constants J 2

2 and F 2 are regarded as the
inertial moment of the disc and the driving couple, respectively. The upper index 2 of the
coefficients denotes the mechanical part of the one-disc dynamo system. Thus, the following
proposition can be obtained:

Proposition 2. The mechanical equation of motion for the one-disc dynamo system can be
expressed by

J 2
2

dωa

dt
= F 2 − M2

11(Ia)
2, (27)

where J 2
2 and F 2 are the inertial moment of the disc and the driving couple, respectively.

Equations (21) and (27) are the equations of motion for the one-disc dynamo system.

3.2. The equations of motion for the Rikitake system

Rikitake [33] has considered a two-disc dynamo system as system I and system II (figure 2).
The rotation of disc I (ω1) in initial magnetic field induces a current of system I (I 1) which
produces a magnetic field B2 through disc II. The interaction between the magnetic field B2

and rotation of disc II (ω2) induces a current of system II (I 2) which produces a magnetic
field B1 through disc I. The interaction between B1 and rotation of disc I regenerates the
current I 1 which reinforces the initial magnetic field. This feedback system maintains the
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Figure 2. The Rikitake system (modified from a figure in [33]).

magnetic field of the Rikitake system. The dynamo process is given by the coupled one-disc
dynamo systems. Hence, the equations of motion for the Rikitake system are obtained from
propositions 1 and 2 [33]:

Theorem 3. In the Rikitake system, the equations of motion are given by

L1
1

dI 1

dt
+ R1

1I
1 = M1

23I
2ω1, L2

2
dI 2

dt
+ R2

2I
2 = M2

14I
1ω2,

J 3
3

dω1

dt
= F 3 − M3

12I
1I 2, J 4

4
dω2

dt
= F 4 − M4

12I
1I 2,

(28)

where the variables, I i and ωi , represent the current and angular velocity with the
subscripts corresponding to the system number I or II, respectively. The coefficients are all
positive constants. The

(
L1

1, L
2
2

)
,
(
R1

1, R
2
2

)
,
(
J 3

3 , J 4
4

)
and (F 3, F 4) are the self-inductances,

resistances, moments of inertia and couples, respectively. The indices of the coefficients 1 and
2 express the electrical part of system I and II, respectively. The indices of the coefficients 3 and
4 express the mechanical part of system I and II, respectively. Mi

jk is the mutual-inductance of
system I and system II. For example, M1

23 is the interaction between variables with the lower
indices, the current I 2 and the angular velocity ω1, with respect to variable with upper index
of the current I 1.

With the aid of symmetry,

L1
1 = L2

2, M1
23 = M2

14 = M3
12 = M4

12, J 3
3 = J 4

4 , R1
1 = R2

2, F 3 = F 4,

(29)

the equations of motion (28) can be written in dimensionless form (not tensor form) as

dI 1

dt
= −µI 1 + I 2ω1,

dI 2

dt
= −µI 2 + I 1ω2,

dω1

dt
= 1 − I 1I 2, (30)

where ω2 = ω1 − ν and ν = µ{(k)2 − (k)−2}. The µ and k are constants.
These equations for the Rikitake system are equivalent to equations of motion in the case

of theory of magnetohydrodynamic dynamo. In the same way of the disc dynamo system,
Faraday’s and Ohm’s laws give the induction equations in the case of magnetohydrodynamic
dynamo theory [28]:

∂B
∂t

= − 1

σ
∇ × (∇ × B) + ∇ × (ṽ × B). (31)
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The resistance term Ri
j I

j in (28) corresponds to the diffusion term in the first one on the right-
hand side of equation (31). The electromotive force Mi

jkI
jωk generated by the rotating disc

in (28) is equivalent to the electromotive force due to the interaction between the fluid motion
and magnetic flux in the second term on the right-hand side of equation (31). Therefore, the
electrical equations of motion correspond to the induction equations.

Moreover, the variables and terms in the equations of motion (28) express characteristics
of the magnetohydrodynamic dynamo action [28]. The current I 1 can be regarded as the total
toroidal current. The angular velocity ω2 represents the mean differential rotation in the core.
This differential rotation is generated by the driving force F 4. Therefore, the term M2

14I
1ω2

represents the production of toroidal magnetic field due to the ω-effect. On the other hand, the
current I 2 can be regarded as the total poloidal current. The angular velocity ω1 represents a
measure of the intensity of the α-effect which is generated by the driving force F 3. Therefore,
the term M1

23I
2ω1 represents the production of the poloidal magnetic field due to the α-effect.

These ω- and α-effects reinforce the original magnetic field. Hence, these feedback processes
of the Rikitake system correspond to the αω-dynamo system.

4. Geometrical description of the Rikitake system

In this section, the equations of motion (28) are regarded as a semispray on the tangent bundle.
Then, from the KCC-theory, geometrical invariants of the Rikitake system are obtained. In
the following, the Latin indices i, j, k, . . . run from 1 to 4.

4.1. The semispray of the Rikitake system

Let (xi) = (q1, q2, θ1, θ2) be the natural coordinates. The coordinates x1 and x2 are
interpreted as the electric charges q1 and q2 in the system I and II, respectively. On the
other hand, the x3 and x4 are interpreted as the angles of the rotating discs θ1 and θ2 in
the system I and II, respectively. Let (xi, yi) denote natural coordinates in a local chart of
the tangent bundle, where yi = (I 1, I 2, ω1, ω2).

In order to obtain a geometrical description of the Rikitake system, the equations of
motion (28) need to be brought into the form of a semispray (5). In the case of i = 1, the
equation of motion for the electrical part of system I,

I 1 = dq1

dt
, L1

1
dI 1

dt
+ R1

1I
1 = M1

23I
2ω1 (32)

can be regarded as

y1 = dx1

dt
,

dy1

dt
+ 2G1(t, xj , yj ) = 0. (33)

By comparing both equations (32) and (33), the coefficient G1 is

G1(t, xj , yj ) = −M1
23

2L1
1

y2y3 +
R1

1

2L1
1

y1. (34)

From the definition Ni
j = ∂Gi/∂yj , the nonlinear connection N1

j is

N1
j = −M1

23

2L1
1

(
δ2
j y

3 + δ3
j y

2
)

+
R1

1

2L1
1

δ1
j . (35)

Moreover, from N1
j , the Berwald connection G1

jk is

G1
jk = −M1

23

2L1
1

(
δ2
k δ

3
j + δ3

k δ
2
j

)
. (36)
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Therefore, the components of the nonlinear connection N1
j and the Berwald connection G1

jk

can be expressed as

N1
1 = R1

1

2L1
1

, N1
2 = −M1

23

2L1
1

y3, N1
3 = −M1

23

2L1
1

y2, G1
23 = G1

32 = −M1
23

2L1
1

.

Thus, the equations of motion (32) or (33) can be rewritten as follows:

y1 = dx1

dt
,

dy1

dt
+ 2G1

23y
2y3 + 2N1

1 y1 = 0. (37)

Similarly, for i = 2, 3, 4, the equations of motion can be rewritten as follows:

y2 = dx2

dt
,

dy2

dt
+ 2G2

14y
1y4 + 2N2

2 y2 = 0, (38)

y3 = dx3

dt
,

dy3

dt
+ 2G3

12y
1y2 = f 3, (39)

y4 = dx4

dt
,

dy4

dt
+ 2G4

12y
1y2 = f 4, (40)

where f 3 and f 4 are defined as

f 3 ≡ F 3

J 3
3

and f 4 ≡ F 4

J 4
4

. (41)

As a result, the equations of motion (28) and the semispray with the nonlinear connection are

yi = dxi

dt
,

dyi

dt
= −Gi

jky
jyk + γ i

j y
j + f i, (42)

S = yi ∂

∂xi
− (

Gi
jky

jyk − γ i
j y

j − f i
) ∂

∂yi
, (43)

Ni
j = Gi

jky
k − 1

2
γ i

j . (44)

Here, the coefficients Gi
jk, γ

i
j and f i are



G1

23 = G1
32 = −M1

23

2L1
1

,G2
14 = G2

41 = −M2
14

2L2
2

,

G3
12 = G3

21 = M3
12

2J 3
3

,G4
12 = G4

21 = M4
12

2J 4
4

,

(45)

γ 1
1 = −2N1

1 = −R1
1

L1
1

, γ 2
2 = −2N2

2 = −R2
2

L2
2

, γ 3
3 = γ 4

4 = 0, (46)

f 1 = f 2 = 0, f 3 = F 3

J 3
3

, f 4 = F 4

J 4
4

. (47)

The tensor expression (45) tells us that the constant Berwald connection Gi
jk plays an important

role in the interaction between the electrical and mechanical systems. For example, G1
23

denotes the interaction between the poloidal current I 2 and the angular velocity ω1 which is
the intensity of α-effect. The nonlinear connection is given by a base connection in Finsler
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space; δyi/dt = dyi/dt +Ni
jy

j . Therefore, the nonlinear connection expresses the interaction
between the (yi)-field and (yj )-field.

The Rikitake system does not behave chaotically when there is a constant of motion for
the semispray (43). The non-chaotic behaviour is given by the condition that the discs of the
Rikitake system rotate with the similar angular velocity, that is ω1 = ω2. In addition,
the coefficients of the Rikitake system should satisfy the symmetry condition (29). Under the
conditions of non-chaotic behaviour, there exists a vector field called the symmetric generator
[37]

X = {(y1)2 − (y2)2} exp(2LRt)
∂

∂t
, (48)

where L ≡ L1
1 = L2

2 and R ≡ R1
1 = R2

2. The symmetric generator satisfies the Lie bracket
relation [X, S] = FX = 0 given in theorem 1, i.e. the real valued function F is equal to
zero. On the other hand, the divergence of semispray (43) is div�S = −2LR = constant.
Therefore, the Lie derivative of the semispray vanishes, i.e. LX div�S = 0. Consequently,
from equation (7), the Lie derivative for the constant of motion Y ≡ div�X vanishes [37], i.e.
LSY = 0. The existence of the constant of motion Y means that trajectories of the Rikitake
system are constrained on a certain plane in the phase space. In other words, the Rikitake
system with the constant of motion becomes a holonomic system and hence does not behave
chaotically.

4.2. Application of the KCC-theory to the Rikitake system in film space

The chaotic behaviour of the Rikitake system can be geometrically expressed by the KCC-
theory. The behaviour of the Rikitake system can be described by the world line in (4 + 1)-
dimensional space-time, whose four-dimensional projection is observed as the usual trajectory.
For Greek indices α, β, γ = 0, 1, 2, 3, 4, x0 = t ∈ R and dx0/dt = 1, the connection
coefficients are

�α
βγ = �i

jk + �i
j0 + �i

0j + �i
00 + �0

jk, �i
jk = Gi

jk,

�i
j0 = − 1

2γ i
j = �i

0j , �i
00 = −f i, �0

βγ = 0.
(49)

Then, the system (42) is

dxα

dt
= yα,

dyα

dt
= −�α

βγ yβyγ . (50)

Moreover, equation (50) can be rewritten in the Pfaffian form as

dxα − yα dt = 0, dyα + �α
γ yγ = 0, (51)

where �α
γ is a (4 + 1) × (4 + 1) matrix valued connection 1-form: � = (

�α
γ

) = (
�α

βγ dxβ
)
.

The components of the connection 1-form � can be expressed by

(
�α

γ

) =




0 0 0 0 0
�1

0 0 �1
2 �1

3 0

�2
0 �2

1 0 0 �2
4

�3
0 �3

1 �3
2 0 0

�4
0 �4

1 �4
2 0 0
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=




0 0 0 0 0
�1

10 dx1 0 �1
32 dx3 �1

23 dx2 0

�2
20 dx2 �2

41 dx4 0 0 �2
14 dx1

�3
00 dx0 �3

21 dx2 �3
12 dx1 0 0

�4
00 dx0 �4

21 dx2 �4
12 dx1 0 0




. (52)

The formalization of this extended space called the film space [21, 35] is adopted in view of
the effect of geometrization. From these film space notations, the KCC-theory can be applied
to the Rikitake system. The geometrical objects are then obtained as follows.

4.3. First invariant

The first invariant of the Rikitake system is given by (9):

ε1 = R1
1

2L1
1

I 1, ε2 = R2
2

2L2
2

I 2, ε3 = −F 3

J 3
3

, ε4 = −F 4

J 4
4

. (53)

Thus, the first invariant represents the voltages R1
1I

1, R2
2I

2 and the driving couples F 3, F 4,
i.e. the first invariant of the Rikitake system is the external force.

4.4. Second invariant and the variational equation of the Rikitake system

Next, let us investigate the Jacobi stability of the Rikitake system. When the trajectories of the
charge or angle xi deviate from the normal paths, i.e. x̄i (t) = xi(t) + ξ i(t)η, the variational
equation (12) gives the behaviour of the deviated trajectories [4]:

D2ξ i

dt2
+ P i

αβly
αyβξ l = 0, (54)

where P i
jkl, P

i
0kl and P i

00l are

P i
jkl = 2

(
∂�i

j [k

∂xl]
+ �m

j [k�
i
l]m + Nr

[kD
i
l]rj

)
,

∂�i
j [k

∂xl]
≡ 1

2

(
∂�i

jk

∂xl
− ∂�i

jl

∂xk

)
, (55)

P i
0kl = 1

2

(
γ i

l|k − γ i
k|l

)
, γ i

l|k ≡ ∂γ i
l

∂xk
− Nh

k

∂γ i
l

∂yh
+ γ m

l �i
mk − γ i

m�m
lk, (56)

P i
00l = 1

2

∂γ i
l

∂t
− �i

mlf
m − 1

4
γ i

mγ m
l . (57)

In the field of engineering, this variational equation is called the hunting equation introduced
by Kron in order to study the stability of electrical machine systems [23].

In case of the Rikitake system, the coefficients (55), (56) and (57) can be calculated as
follows. The Douglas tensor Di

jkl as the fifth invariant vanishes because the equations of
motion (28) are quadratic differential equations whose coefficients are all constants. This
shows that the fourth invariant P i

jkl can be reduced to the usual Riemannian curvature tensor:

P i
jkl = 2�m

j [k�
i
l]m. (58)

Moreover, the dissipation terms of (42) can be shown to be P i
0kl and P i

00l as

P i
0kl = γ m

[l �i
k]m, P i

00l = −�i
lhf

h − 1
4γ i

mγ m
l . (59)
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Thus, we can determine the instability of the deviated path from the variational equations:

D2ξ r

dt2
+

{
2�m

j [k�
r
l]myjyk +

(
−γ m

j �r
ml +

1

2
γ m

l �r
mj +

1

2
γ r

m�m
lj

)
yj − �r

lhf
h − 1

4
γ r

mγ m
l

}
ξ l = 0,

(60)

D2ξ s

dt2
+

{
2�m

j [k�
s
l]myjyk +

(
−γ m

j �s
ml +

1

2
γ m

l �s
mj +

1

2
γ s

m�m
lj

)
yj

}
ξ l = 0, (61)

where the subscripts i = 1, 2, 3, 4 are divided into electrical deviations r = 1, 2 and
mechanical deviations s = 3, 4. The Jacobi field equation can also be obtained from the Lie
derivative of the connection in film space along the deviation vector ξ i [40]. The connection can
be expressed by the mutual-inductances as the interaction between electrical and mechanical
systems. Therefore, the Jacobi equation gives the change in interaction along the deviated
direction ξ i .

4.5. Third invariant

The third invariant is obtained by differentiating P i
j and P i

k with respect to yk and yj ,
respectively:

P i
jk = 2�i

m[jN
m
k] . (62)

Because of the existence of the torsion tensor, the trajectories of the Rikitake system are not in
a closed loop which implies periodic oscillation. Therefore, the torsion tensor P i

jk expresses
the aperiodic reversals of the magnetic field.

5. Discussions and conclusion

5.1. Relationship between geometrical objects and the magnetic field

In this section, the relation between geometrical objects and the behaviour of the magnetic
field is investigated. As mentioned in section 2, the curvatures P i

jkl, D
i
jkl and the torsion P i

jk

survive in the Berwald space. On the other hand, as mentioned in section 4, the Douglas
tensor as curvature tensor Di

jkl disappears in the Rikitake system. Therefore, two geometrical
objects, i.e. the curvature P i

jkl (or P i
l ) and the torsion P i

jk , express the states of the Rikitake
system. Moreover, the torsion tensor expresses the deviation curvature as follows:

P i
j = P i

kj y
k + P i

0j , (63)

where

P i
0j = εi

|j = 1
2

(
�m

jkγ
i
m − �i

mjγ
m
k

)
yk − 1

4γ i
mγ m

j − f m�i
mj . (64)

From this relation, it can be seen that the torsion tensor influences the Jacobi stability for
the deviated trajectories. In the Rikitake system, the torsion tensor is geometrically a more
fundamental object than the curvature tensor. Therefore, we first discuss the influence of the
torsion tensor on the chaotic behaviour of the Rikitake system.

Let us investigate the components of the torsion tensor. From (62), the torsion tensor with
respect to the current I 1, P 1

jk , is

P 1
12 = −�1

23N
3
1 = 1

4

M1
23

L1
1

M3
12

J 3
3

I 2, P 1
13 = −�1

23N
2
1 = −1

4

M1
23

L1
1

M2
14

L2
2

ω2, (65)
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Figure 3. Numerical results for different initial conditions. µ = 1.2, and ν = 4.5. Top:
(y1(0), y2(0), y3(0)) = (1.0, 4.0, 2.1) and bottom: (2.5, 4.0, 2.1).

P 1
23 = −�1

23N
2
2 = 1

4

M1
23

L1
1

R2
2

L2
2

, P 1
43 = −�1

23N
2
4 = −1

4

M1
23

L1
1

M2
41

L2
2

I 1. (66)

Similarly, P 2
jk ∝ �2

14, P
3
jk ∝ �3

12 and P 4
jk ∝ �4

12. The torsion tensor P 1
jk can be expressed by

the mutual-inductance �1
23 as the interaction between electrical field (y2) and mechanical field

(y3), i.e. the interaction between the poloidal current field I 2 and the intensity of the α-effect
ω1. Moreover, the components of the torsion tensor P 1

jk can be expressed by the nonlinear
connection Ni

j as the projection of the (yi)-field into the (yj )-field. For example, in P 1
12, the

poloidal current I 2 and the α-effect ω1 interact with each other. Then, the α-effect ω1 also
interacts with the toroidal current I 1. These two interactions, Mi

jh and Nh
k , thus express the

torsion tensor P i
jk and cause the chaotic behaviour of the Rikitake system.

Next, let us consider the effect of the torsion tensor on the second invariant P i
l . Using the

dimensionless form (30), we obtain the electrical deviation tensor:

4P r
l =

(
−(y3)2 + (y2)2 − µ2 −y1y2 + 2µy3 + 2

−y1y2 + 2µy3 − 2µν + 2 −(y3)2 + (y1)2 + νy3 − µ2

)
. (67)

The deviation curvature tensor determines the behaviour of trajectories when the initial
conditions are varied. For example, let us consider the case when µ = 1.2, ν =
4.5 and the initial condition changes from (y1(0), y2(0), y3(0)) = (1.0, 4.0, 2.1) to
(y1(0), y2(0), y3(0)) = (2.5, 4.0, 2.1). From these and equation (30), the computed time
series and trajectories of current I 1 and I 2 in phase space are shown in figure 3; the
top figure corresponds to (y1(0), y2(0), y3(0)) = (1.0, 4.0, 2.1) and the bottom one to
(y1(0), y2(0), y3(0)) = (2.5, 4.0, 2.1). In the case of (y1(0), y2(0), y3(0)) = (1.0, 4.0, 2.1),
the real part of the eigenvalues of the deviation curvature tensor is positive λ = 1.84. Similarly,
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in the case of (y1(0), y2(0), y3(0)) = (2.5, 4.0, 2.1), the deviation curvature tensor has positive
eigenvalues λ1, λ2 = 0.90, 4.10. Hence, from theorem 2, the deviation curvature tensor shows
that field trajectories in figure 3 are Jacobi unstable.

Next, a special case of the deviation curvature tensor is considered, i.e. when there is no
torsion tensor P i

jk or interaction Mi
jk . In this case, from relation (63), the deviation curvature

tensor P i
j is determined by only P i

0j . Then, the deviation curvature tensor has the eigenvalues

as λ = −(
R1

1

)2/
4,−(

R2
2

)2/
4 < 0 and λ = 0, i.e. the trajectories of the system are Jacobi

stable. Therefore, the existence of the torsion tensor determines the instability of the deviated
trajectories. Hence, the torsion tensor can be expressed by the mutual-inductances as the
interaction between mechanical and electrical systems which causes the chaotic behaviour of
the Rikitake system.

5.2. Chaotic behaviour of the Rikitake system and the topological invariant

By a topological invariant or magnetic helicity, the chaotic behaviour of the Rikitake system
can be related to a magnetohydrodynamic motion in dynamo action.

The magnetic helicity of field B in K flux tubes with a vector potential A is defined by [8]:

H(B) =
∫

V

A · B dV

≈
K∑

i=1

Ti (�
i)2 +

K∑
i,j=1

Lij�
i�j , (68)

where �i is the magnetic flux and V is a domain in R3. Ti is the self-helicity of a flux tube
i and Lij is the mutual-helicity of flux tubes i and j . By regarding the potential A and the
field B as a connection 1-form � and a curvature 2-form � ∧ �, the magnetic helicity can be
expressed by the Chern–Simons number [20]:

CS ≈
∫

tr

(
� ∧ d� +

2

3
� ∧ � ∧ �

)
, (69)

where the potential � = (�i
k) = (�i

jk dxj ) is given by the spatial components of the connection
coefficient (49). The ∧ is an exterior product. In the Rikitake system, the term � ∧ d�

vanishes because the connection coefficients �i
jk are all constant. On the other hand, the term

tr(� ∧ � ∧ �) is

tr(� ∧ � ∧ �) = 3
(
�1

23�
3
12�

2
41 dx1 ∧ dx2 ∧ dx4 − �1

32�
2
14�

4
21 dx1 ∧ dx2 ∧ dx3

)
.

Hence, the helicity or the Chern–Simons number of the Rikitake system is

CS ≈ 2
∫ (

�1
23�

3
12�

2
41 dx1 ∧ dx2 ∧ dx4 − �1

32�
2
14�

4
21 dx1 ∧ dx2 ∧ dx3

)
= 2

∫
M2

14

L1
1

dx1 ∧ M1
23

L2
2

dx2 ∧
(

M3
12

J 3
3

dx4 − M4
12

J 4
4

dx3

)
, (70)

where the mutual-inductances express the helicity. As mentioned in 5.1, the mutual-
inductances in the torsion tensor imply the interactions which cause a chaotic behaviour.
Therefore, the helicity can be related to the chaotic behaviour of the Rikitake system.
Moreover, the existence of helicity is determined by the mechanical parts, M3

12 dx4
/
J 3

3 and
M4

12 dx3
/
J 4

4 . Therefore, the helicity vanishes when the coefficients satisfy M3
12 = M4

12, J
3
3 =

J 4
4 and the two discs rotate with similar angular velocities, ω1 = ω2 or dx3 = dx4. This state

of non-helicity is equivalent to the non-chaotic behaviour of the Rikitake system because of the
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unique invariant X = {(y1)2 − (y2)2} exp(−2RLt) [24, 25, 37]. In magnetohydrodynamics,
the existence of helicity expresses a turbulent state due to the α-effect [32]. Therefore, the
helicity in equation (70) shows that the chaotic behaviour of the Rikitake system can be
regarded as the turbulence motion in the magnetohydrodynamic dynamo.

In the case when the helicity does not vanish, the Chern–Simons number (70) can be
integrated over the circuit of system I, II and the angle of disc, respectively;

CS = 2
∫

I

M2
14

L1
1

dx1
∫

II

M1
23

L2
2

dx2

(∫ 2π

0

M3
12

J 3
3

dx4 −
∫ 2π

0

M4
12

J 4
4

dx3

)

= 4π

L1
1L

2
2

(
M3

12

J 3
3

− M4
12

J 4
4

)
M2

14Q
1M1

23Q
2

= 4πT 2

L1
1L

2
2

(
M3

12

J 3
3

− M4
12

J 4
4

)
�̃1�̃2

= L12�̃
1�̃2, (71)

where Qi is the total electric charge of qi and �̃i is the magnetic flux through the disc per unit
time T, i.e. �̃1 = M2

14Q
1/T = M2

14I
1. From expressions (68) and (71), the mutual helicity is

given by L12. The mutual-inductance M3
12 gives the interaction between the toroidal current

I 1 and the poloidal current I 2 with respect to the α-effect as ω1. On the other hand, the mutual-
inductance M4

12 gives the interaction between the toroidal current I 1 and the poloidal current
I 2 with respect to the ω-effect as ω2. Thus, in the Rikitake system, the chaotic behaviour as a
turbulent motion can be induced by the difference in the intensity of the interaction between
poloidal and toroidal currents in the α- and ω-effects.

5.3. Other nonlinear systems and the KCC-theory

Finally, it is shown that the KCC-theory can be applied to other nonlinear dynamical systems.
In general, nonlinear systems can be unified into a single expression [38]:

dyi

dt
= Aijyj + Bijkyjyk, (72)

where Aij , Bijk are arbitrary functions and i = 1, 2, 3. The dynamical system (72) expresses a
special case of the Rikitake system when Aij = γij , Bijk = Gijk and fi = 0 in equation (42).
This system (72) expresses various nonlinear phenomena occurring in physics, chemistry and
biology. For example, the equations of motion (72) express the Lorentz model in meteorology.
The geometrization of the Lorentz model has been studied in terms of the Finsler geometry
[9, 16]. The system (72) also expresses the Lotka–Volterra model in biology. The
geometrization of the general case of the Lotka–Volterra model (Volterra–Hamilton system)
has been studied by the KCC-analysis [2, 4–6]. Other areas where this dynamical system (72)
appears are in plasma physics [17] and in Belousov-Zhabotinskii reaction model in chemistry
[41]. In these dynamical systems, there exist five KCC-invariants and a topological invariant
(Chern–Simons number) as in the case of the Rikitake system. Therefore, the five KCC-
invariants and the topological Chern–Simons number can express the chaotic behaviour of the
various nonlinear dynamical systems (72).

5.4. Conclusion

In this paper, the Rikitake system is studied from the view point of differential geometry
(theory of Kosambi–Cartan–Chern). The electromechanical equations of motion derived from
Faraday’s law correspond to the magnetohydrodynamic equations. By applying the geometric
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theory to the Rikitake system, the behaviour of the system can be expressed by the five
geometrical invariants. The third invariant is a torsion tensor which is made up of mutual-
inductances. Therefore, the torsion tensor expresses the physical interaction between the
electrical and mechanical systems. This interaction causes aperiodic reversals of the magnetic
field. Moreover, a topological invariant, the Chern–Simons number, shows that the chaotic
behaviour corresponds to a magnetohydrodynamical turbulent motion. This geometric theory
can also be applied to other nonlinear dynamical systems. Thus, it is possible to analyse chaotic
behaviour of the nonlinear dynamical systems based on such geometrical and topological
invariants.
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206–12
[14] Cook A E and Roberts P H 1970 The Rikitake two-disc dynamo system Proc. Camb. Phil. Soc. 68 547–69
[15] Douglas J 1928 The general geometry of paths Ann. Math. 29 143–68
[16] Dryuma V S 1994 Geometrical properties of the multidimensional nonlinear differential equations and the

Finsler metrics of phase spaces of dynamical systems Theor. Math. Phys. 99 555–61
[17] Fuchs V 1975 The influence of linear damping on nonlinearly coupled positive and negative energy waves

J. Math. Phys. 16 1388–92
[18] Hide R 1995 Structural instability of the Rikitake disk dynamo Geophys. Res. Lett. 22 1057–9
[19] Ito K 1980 Chaos in the Rikitake two-disc dynamo system Earth Planet. Sci. Lett. 51 451–6
[20] Jackiw R and Pi S-Y 2000 Creation and evolution of magnetic helicity Phys. Rev. D 61 105015
[21] Kondo K 1955 Geometry of paths as applied to the theory of dynamical systems RAAG Memoirs of the Unifying

Study of the Basic Problems in Engineering Sciences by Means of Geometry vol I, ed K Kondo (Tokyo:
Gakujutu Bunken Fukyu-Kai) pp 316–34

http://dx.doi.org/10.1016/S1468-1218(02)00085-8
http://dx.doi.org/10.1016/S0362-546X(00)00101-2
http://dx.doi.org/10.1023/A:1019752327311
http://dx.doi.org/10.2307/1969166
http://dx.doi.org/10.1017/S0022112084002019
http://dx.doi.org/10.1007/s000330050061
http://dx.doi.org/10.1088/0143-0807/24/1/304
http://dx.doi.org/10.1007/BF01474603
http://dx.doi.org/10.1007/BF01016138
http://dx.doi.org/10.1063/1.522709
http://dx.doi.org/10.1029/95GL00779
http://dx.doi.org/10.1016/0012-821X(80)90224-1
http://dx.doi.org/10.1103/PhysRevD.61.105015


2772 T Yajima and H Nagahama

[22] Kosambi D D 1933 Parallelism and path-spaces Math. Z. 37 608–18
[23] Kron G 1934 Non-Riemannian dynamics of rotating electrical machinery J. Math. and Phys. 13 103–94
[24] Labrunie S and Conte R 1996 A geometrical method towards first integrals for dynamical systems J. Math.

Phys. 37 6198–206
[25] Llibre J and Zhang X 2000 Invariant algebraic surfaces of the Rikitake system J. Phys. A: Math. Gen. 33 7613–35
[26] Miron R and Frigioiu C 2005 Finslerian mechanical systems Algebras Groups Geom. 22 151–67
[27] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: Freeman)
[28] Moffatt H K 1978 Magnetic Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge

University Press)
[29] Montgomery H 1999 Unipolar induction: a neglected topic in the teaching of electromagnetism Eur. J. Phys.

20 271–80
[30] Montgomery H 2004 Current flow patterns in a Faraday disc Eur. J. Phys. 25 171–83
[31] Moroz I M, Hide R and Soward A M 1998 On self-exciting coupled Faraday disk homopolar dynamos driving

series motors Physica D 117 128–44
[32] Parker E N 1955 Hydromagnetic dynamo models Astrophys. J. 122 293–314
[33] Rikitake T 1958 Oscillations of a system of disk dynamos Proc. Camb. Phil. Soc. 54 89–105
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